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Abstract. Cloud fraction (CF) is an integral aspect of weather and radiation forecasting, but real time monitoring of CF is still 

inaccurate, expensive and exclusive to commercial sky imagers. Traditional cloud segmentation methods, which often rely on 10 

empirically determined threshold values, struggle under complex atmospheric and cloud conditions. This study investigates 

the use of a Random Forest (RF) classifier for pixel-wise cloud segmentation using a dataset of semantically annotated images 

from five geographically diverse locations. The RF model was trained on diverse sky conditions and atmospheric loads, 

ensuring robust performance across varied environments. The accuracy score was always above 85% for all the locations along 

with similarly high F1 score and Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) score establishing 15 

the efficacy of the model. Validation experiments conducted at three Atmospheric Radiation Measurement (ARM) sites and 

two Indian locations, including Gadanki and Merak, demonstrated that the RF classifier outperformed conventional Total Sky 

Imager (TSI) methods, particularly in high-pollution areas. The model effectively captured long-term weather and cloud 

patterns, exhibiting strong location-agnostic performance. However, challenges in distinguishing sun glares and cirrus clouds 

due to annotation limitations were noted. Despite these minor issues, the RF classifier shows significant promise for accurate 20 

and adaptable cloud cover estimation, making it a valuable tool in climate studies. 

1 Introduction 

Clouds are a fundamental constituent of our weather systems and one of the most critical climate variables influencing the 

Earth’s radiation budget. Cloud albedo influences how much solar radiation is reflected into space and hence affects the energy 

budget at Earth's surface and of the atmosphere (Ramanathan et al., 1989). It also influences the atmospheric thermodynamics, 25 

surface fluxes and hence the water vapor and carbon cycle (Várnai and Marshak, 2015), thereby impacting the extent of many 

land-atmosphere processes, feedback and interactions at various spatio-temporal scales. Consequently, we need monitoring 

devices to observe the fluctuations in cloud cover and other cloud properties at a high spatial and temporal resolution. 
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Typically, these devices fall into two categories: satellite-based and ground-based imagers. While satellite imagers can observe 

clouds over larger spatial domains (Verma et al., 2018), they often come with lower temporal resolutions. Ground-based sky 30 

monitoring devices, on the other hand, capture data at varying temporal resolutions, ranging from as frequent as 30 seconds to 

5 minutes over a fixed point.  

Over the years, researchers have developed numerous algorithms to detect clouds in the images and classify them into broader 

categories of cloud types. These cloud detection algorithms primarily fall into two categories: thresholding techniques and 

classifier-based methods. A clear sky (CSL) threshold method, as discussed by (Shields et al., 2009), utilized spectral bands, 35 

especially the red and blue bands, to distinguish between clouds and clear sky.  Many researchers have adopted this (Chauvin 

et al., 2015; Chow et al., 2011; Ghonima et al., 2012; Kuhn et al., 2018);(Lothon et al., 2019),. However, this threshold value 

varies within an image, depending on the relative distance between the sun and the image pixel. This dynamic adjustment is 

crucial because scattering properties change with variations in the path length and the angular position of the sun, as 

demonstrated by (Long et al., 2006). As such, an adaptive thresholding technique was proposed based on distance from the 40 

sun (Li et al., 2011; Yang et al., 2012). However, cloud images are inherently diverse, featuring complex spectral information. 

Due to this diversity, conventional image segmentation techniques, such as thresholding and shape differentiation methods, 

struggle to provide precise and consistent segmentation results.  

Modern algorithms integrate multiple features into building classifier like including spectral, statistical, and Fourier-

transformed features in a supervised manner (Calbó et al., 2008). Many such supervised algorithms have been used for the 45 

recognition of different cloud types. (Heinle et al., 2010) and (Rajini and Tamilpavai, 2018) have used a k-nearest neighbour 

(KNN) classifier to determine cloud type using statistical features. (Kazantzidis et al., 2012) proposed an improved KNN 

classifier for cloud-type determination where solar zenith angle and visible solar disk were considered. To improve the speed 

of classification, (Rajini and Tamilpavai, 2018) have used neighbourhood component analysis to optimize the feature selection. 

(Li et al., 2015) have established a cloud identification model based on the Otsu technique (Otsu, 1979) with an aim to increase 50 

the accuracy of short-term solar power production. (Satilmis et al., 2020) have developed a hierarchical histogram merging 

method to classify cloud types in high dynamic range (HDR) images. While most authors have predominantly used RGB 

colour space or some derivative feature of RGB values, (Jayadevan et al., 2015) have suggested the use of hue-saturation-

value colour space to increase the contrast between clouds and background sky. The use of machine learning for cloud 

classification has also gained a lot of traction in recent years. (Taravat et al., 2015) and (Li et al., 2016) showcase the use of 55 

multi-layer perceptron neural networks as well as support vector machines in cloud detection. Artificial neural networks (ANN) 

have also been implemented to distinguish clouds and non-clouds from sky images (Xia et al., 2015) using a hybrid KNN and 

ANN method. (Kliangsuwan and Heednacram, 2018) introduced using Fourier-transformed features for classification using 

ANN. (Wan et al., 2020) combined several texture, colour and spectrum features to classify clouds as cirrus, cumulus, and 

stratus clouds. While many existing methods excel at classifying different cloud types, their accuracy tends to hover around 60 

80-85% when it comes to precisely identifying individual cloud pixels. A U-Net based convolutional neural network model 
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developed by (Fa et al., 2019), (Fabel et al., 2022) and (SegCloud: Xie et al., 2020) have shown promising results of having 

nearly the same cloud fraction output as obtained by manual observations. An improvement in the encoder-decoder model has 

been developed by (CCAD-Net: Ye et al., 2022) where the decoding stage is branched into binary segmentation for cloud 

detection and attribute discrimination and feature learning. However, these CNN techniques require high-power graphical 65 

processing units to process. 

This paper's primary focus is on presenting a low computational power, high accuracy cloud fraction retrieval approach that 

leverages the power of random forest for pixel-level cloud classification in sky images. The predicted cloud fractions are 

compared with semantically annotated sky images from five different locations with varying atmospheric and sky conditions 

to validate their accuracy and reliability. Moreover, a baseline comparison has been done between the output of total sky 70 

imager used at the three ARM sites and our model’s output. A yearly comparison of trends in observed cloud fraction has also 

been done to showcase the stability of the classifier’s output under different climatic conditions.   

2 Observing sites  

The sky image data used in the current work are taken from three different ARM sites (Flynn & Morris, tsi sky imager (a1)). 

These are publicly available data with the following sites: the Black Forest, Germany (FKB; 48.54° N, 8.40° E, 511 masl); 75 

Southern Great Plains, Central Facility, Lamont, Canada (SGP; 36.61° N, 97.49° W, 315 masl); and Tropical Western Pacific, 

Central Facility, Darwin, Australia (TWP; 12.42° S, 130.89° E, 30 masl). We also took sky image data from National 

Atmospheric Research Laboratory (NARL; 13.48° N, 79.18° E, 375 masl) Gadanki, India. All these sites have the common 

make of instrument - a Total Sky Imager (TSI) that takes the sky images. The TSI, used at all four locations, has a dome-

shaped spherical mirror for a 180° field-of-view of the sky. A downward-facing CCD camera is placed above the dome mirror 80 

to take images. A shadow band is also placed that continuously rotates as it tracks the sun. This shadow band blocks the intense 

direct sun that can saturate the images. This multi-site data collection allows for the evaluation of the model’s robustness across 

varied locations and their atmospheric conditions. 

Additionally, multi-year sky image data is taken from an all-sky camera (Ms. Prede, Japan) recorded for every 5 minutes 

interval from the National Large Solar Telescope site, Merak (33.800 N; 78.620 E; 4310 m, asl), Ladakh, India. Such cloud 85 

data in the high-altitude mountain sites in the Ladakh region are used for the astronomical site characterization program of the 

Indian Institute of Astrophysics, Bengaluru, India. There are several unique features of the observing site, such as low aerosol 

content (~0.05 at 500 nm, (Ningombam et al., 2015)), with 61-68% of clear skies in a year (Ningombam et al., 2021), dry and 

cold atmospheric conditions located in the rain shadow area of the Himalaya. A comprehensive statistical analysis is conducted 

on the model’s output for this site to show the effectiveness of capturing some of the intricate atmospheric conditions of this 90 

location.  
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3 Data Generation and Preprocessing 

All sky images are organized using a timestamp-based naming convention to maintain chronological order. Any image 

captured before 6:00AM and after 6:00PM (local time) were removed because of bad lighting conditions. Additionally, images 

captured during rain were also removed because of the undue distortions caused by the raindrops on the lens. Since images 95 

from different locations had varying image size, all the images were cropped and resized to 280 x 280 pixels to remove dead 

zones in the image. The images had lens glares and occasional occlusions from nearby structures and instruments. To mitigate 

these issues, a circular mask of radius 130 pixels is applied to all images, effectively removing potential interferences that 

could disrupt the training process.  

3.1 Data Selection 100 

A large part of the uncertainty in this kind of supervised training is determining the optimal level of variability within the 

dataset to ensure the model learns effectively. A well-curated selection must be made, encompassing various scenarios, 

including clear skies, different cloud cover percentages and atmospheric/sky conditions for the ML model to understand the 

diverse data and increase its robustness. A systematic approach was followed to curate the image dataset for training our 

machine learning model. Initially, a thorough visual inspection of the entire image pool was performed. The goal was to ensure 105 

a balanced representation of cloud cover percentages in our dataset. Around 300 images from each site were carefully selected 

ranging from no clouds to 100% cloud coverage (based on visual estimation). This approach allowed us to create a diverse and 

well-structured training dataset of different CF and different cloud types required for training. This would be instrumental in 

developing an effective machine-learning model for cloud cover classification. A set of 100 images, that also contains various 

cloud percentages between 0 to 100% and cloud types was kept aside for validation of the trained models generated. 110 

3.2 Ground Truth Data Creation 

About 2000 sky images, selected from all the five locations are meticulously annotated using the MATLAB image labeller 

app. This tool offers advanced capabilities for image annotation, allowing for annotations in the form of lines, rectangles, 

polygons, or pixel-level detail, with the added benefit of colour coding for a well-organized graphic user interface. 

For images with complex cloud shapes, pixel-level annotation is the optimal selection. These annotations involve assigning 115 

numerical labels to different elements in the images, with 0 representing the sky, 1 representing the sun, 2 representing the 

clouds, and 3 representing occlusions. Given the diverse and complex nature of clouds, along with variations in experts' 

perspectives on cloud pixels within an image, the annotation process involves three different domain experts. An overlap of 

their annotations is taken to produce the final annotated image. 

These annotated images are saved as separate pixel matrix files, retaining the same name as the original image file. This is a 120 

crucial step to ensure that the correct annotations are cross-referenced during the model's training and testing phases. 
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4 Model Selection 

Random forest is a machine-learning technique to solve classification problems (Breiman, 2001). It is an ensemble method 

that combines the predictions of multiple decision trees to produce a more accurate and stable prediction.  Here at every 

instance, a node is partitioned based on one optimal feature among several selected features. Hence, for each decision tree, 125 

there is maximum independence leading to generalized performance and a decreased chance of over-fitting (Dietterich, 2000). 

The final prediction is a result of the majority vote calculated using the probability of each kth class: 

𝑃𝑘 =
𝑤𝑘𝑁𝑘

∑ 𝑤𝑗𝑁𝑗
𝑚
𝑗=1

                                                                                                                                                   (1) 

Where 𝑚 is total number of classes, 𝑁𝑗 , 𝑁𝑘 are number of trees predicting the jth and kth class and 𝑤𝑗 , 𝑤𝑘 are the weights of the 

jth and kth class. For tuning the RF classifier, two of the most important parameters that need to be effectively chosen are no. 130 

of decision trees (𝑁𝑡𝑟𝑒𝑒) and no. of selected feature variables (𝑀𝑓𝑒𝑎𝑡). Higher  𝑀𝑓𝑒𝑎𝑡 implies an increased correlation between 

two decision trees resulting in poor categorization. Similarly, larger 𝑁𝑡𝑟𝑒𝑒 can provide increased accuracy at the cost of higher 

computational resources. It has been found that higher 𝑁𝑡𝑟𝑒𝑒 can lead to over-fitting in some cases (Scornet Erwan, 2017). (Fu 

et al., 2019 and Ghasemian & Akhoondzadeh, 2018) have suggested choosing the two parameters such that they are large 

enough to capture the patterns and have a wide diversification but small enough for the model to run at reduced computational 135 

power and prevent overfitting.  

The only limitation of RF is that they are difficult to interpret. Since an ensemble makes the final predictions of many decision 

trees, and it is difficult to explain why a particular prediction was made. Even then, (Mu et al., 2017) explain that RF has lower 

time and computation costs when the data size is larger than most machine learning algorithms. (Wang et al., 2020) have used 

RF for cloud masking and study of cloud thermodynamics using satellite data which have shown good resemblance with the 140 

lidar observations. (Sedlar et al., 2021) have classified cloud types based on surface radiation measurements using RF. (Li et 

al., 2022) have used RF to classify cloud types from images taken by an all-sky imager for astronomical observatory site 

selections. While these findings show the prowess of RF in cloud type classification, they also form the motivation to use the 

RF algorithm in this paper to predict the cloud fraction from the sky images by classifying the cloud and non-cloud pixels.  

The process of selecting features from the images under examination is a pivotal step in image processing and in-depth 145 

understanding of the scenes observed through the sky imager.  These features can be spectral, textural or a combination of 

both. 

The selection done in the paper includes the fundamental red (R), green (G), and blue (B) colour channels, which provide 

insights into colour composition and distribution within the images. Additionally, the Hue, Value, and Saturation (HVS) model 

is considered, offering information about the dominant colour tone, brightness, and colour vividness, thus contributing to the 150 

interpretation of visual perception. To delve into spectral properties, the ratio of red (R) to blue (B) channels and its logarithmic 
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counterpart are used, revealing variations that are indicative of cloud presence and atmospheric conditions. Notably, the RAS 

(Removal of Atmospheric Scattering) feature, as introduced by (Yang et al., 2017), emerges as a key component in this 

segmentation task. This composite parameter mitigates the influence of atmospheric scattering on image data, merging 

panchromatic, bright, and dark channels. It minimizes the inhomogeneous sky background throughout the image and thereby 155 

enhances the distinction between cloud and sky regions. Each of these features brings a unique perspective to image analysis, 

encompassing a diverse array of image characteristics, each playing a distinct and indispensable role in the decision tree. 

 

Figure 1: Algorithm flowchart 

 5 Model Training and Evaluation 160 

For each of the locations using TSI, the selected 300 images aimed to capture the diversity of sky conditions of that particular 

location, were used to train a random forest classifier. The classifier was configured with 100 trees (n_estimators=100) and a 

fixed random seed (random_state=42) to ensure the reproducibility of results. While the set of images are representation of 

different cloud fractions, they also encompass various cloud types, weather conditions, and lighting scenarios of each location.  
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We then applied the trained models to predict cloud fractions (CF) on the reserved 100 annotated images for each location. 165 

Each model, trained specifically for a given location, was used to predict the cloud fraction for the test images corresponding 

to that location. The predicted CF values were compared against the ground truth annotated CF values for these test images, 

providing a direct measure of the model's prediction accuracy. We computed various performance metrics, including accuracy, 

F1-score and ROC-AUC score, to assess the classifier's effectiveness in distinguishing between cloud and non-cloud regions 

which is tabulated in Table 1.  170 

Table.1. Various performance metrics of the trained model for individual locations  

Location Accuracy Score F1 Score ROC AUC Score 

Black Forest, Germany 0.92 0.88 0.91 

Lamont, Canada 0.89 0.84 0.87 

Darwin, Australia 0.88 0.85 0.88 

Gadanki, India 0.86 0.82 0.85 

While the accuracy score for all the locations has been greater than 85%, the F1 score is also hovering around the same figure, 

suggesting that the model has been trained on a well-balanced dataset having different classes. The ROC-AUC score is also 

high across all locations, indicating that the model has good discriminatory ability between different classes (e.g., cloud vs. no 

cloud). The model shows strong predictive ability overall, especially in Germany, with slightly lower performance in Canada 175 

and Australia. India presents more challenges for the model, possibly due to complex cloud formations. 

5.1 Model Validation 

The model's primary objective is to determine the cloud fraction, representing the proportion of the area covered by clouds 

relative to the total area. This effectively is a ratio between the number of pixels that are clouds to the total number of visible 

sky pixels.  180 

To gauge the model's performance, the ground truth of the cloud fraction is determined by calculating this ratio for both the 

annotated images and the model's predictions. A comparison was made between the two ratios obtained, and a scatter plot of 

the predicted cloud fraction vs the ground truth was plotted for each location.  

Initially, a same-location RF classifier was trained using 300 images from individual sites using the TSI and validated on 

images from the same site. Subsequently, a unified training set of 300 images was created using some of the images from the 185 

training sets of all four sites that use the TSI. A new multi-location trained RF model was developed using this merged training 

set, and its performance was evaluated on the validation set from individual sites. Additionally, the cloud fraction data provided 

by TSI of the ARM sites and Gadanki were used for comparison with the RF classifier outputs and the ground truth. The results 

of the comparative analysis from these experiments are shown in Fig. 2.  
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 190 

Figure 2: Comparison of cloud fraction output against ground truth, of single-location RF model (in blue), multi-location RF model 

(in green) and TSI output (in black) of ARM sites located at Black Forest Germany, Lamont Canada, and Darwin Australia and 

Gadanki, India where a TSI has been used to get sky images. The RF classifier model has generally performed better than the TSI 

output, with the same-location RF classifier having the higher fit value followed by the multi-location RF classifier. The fit value of 

TSI has been the lowest in all four cases. 195 

It can be inferred from the graphs that the same-location trained RF classifier has generally outperformed the multi-location 

trained RF classifier, which is expected. However, the difference in performance is not substantial, suggesting a location 
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agnostic behaviour of the classifier model. Furthermore, the RF classifier shows better accuracy compared to the TSI output 

as indicated by the higher fit value (R2) of the RF classifier model in all four cases.   This is further illustrated in Fig. 3, which 

compares the outputs of our RF classifier and the TSI for three randomly selected sky images taken by the TSI at Gadanki, 200 

India. In these cases, the TSI struggled to accurately detect all clouds, missing several significant cloud formations. In contrast, 

our RF classifier performed notably better, closely aligning with the annotated clouds. 

 

Figure 3: Comparison of the detected clouds by the RF Classifier and by the TSI (at Gadanki, India) with the annotated clouds. 

First column are the actual images captured by TSI on 3rd July 2010 at 10:15 AM, 10:25AM and 11:00AM IST. Second column is 205 
the corresponding annotated image with the white colour representing clouds and everything else in black. Third column is the RF 

classifier’s image output of the detected cloud pixels with white colour representing clouds and everything else in black. Fourth 

column shows the cloud pixels detected by TSI software, with white colour as thin clouds, grey colour as thick clouds, blue as sky, 

sun’s position as yellow and everything else in black. The TSI is underestimating the cloud pixels in all three cases while the RF 

classifier is capturing them nicely. 210 

Another intriguing observation that is highlighted in Fig. 2. is the variability of TSI’s output over various regions. The TSI 

outputs exhibit higher accuracy at locations characterized by lower pollution levels, such as Black Forest, Germany, and 
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Lamont, Canada, compared to areas with elevated pollution loading, such as Gadanki, India, and Darwin, Australia. This 

observation suggests that the TSI may yield more reliable results in cleaner environments due to reduced atmospheric 

interference and greater clarity of sky images. However, locations with higher pollution levels may introduce complexities and 215 

uncertainties in TSI outputs, potentially compromising their accuracy. 

In contrast, the RF classifier model is not much affected by location-specific pollution loading effects. Regardless of the 

environmental conditions or pollution levels, the RF classifier maintains its accuracy in estimating cloud fractions from sky 

images. This robustness highlights the adaptability and generalizability of the RF classifier model across different geographical 

locations with similar imaging equipment. 220 

The RF classifier is also able to capture the regional trends of cloud fraction across all four locations as evident in Fig. 4. It 

shows the median CF data as heatmaps with each row corresponding to one of the four locations and each column 

corresponding to median CF obtained from TSI data, median CF predicted by our RF classifier and the percentage difference 

between them respectively. The x axis of the heatmap represents the months of the year (Jan to Dec) in numbers and the y axis 

represents the hour of the day from 6AM to 6PM local time for each region. The heatmap colour gradient indicates the CF 225 

values, with darker shades representing higher cloud fractions. While the general patterns match, subtle regional differences 

become apparent in the percentage difference heatmaps. In case of Australia, the TSI overestimates cloud cover in the first 

half of the year and underestimates it in the latter half. This is seen in the positive percentage differences (warmer colours) in 

the early months and negative differences (cooler colours) later in the year. Germany and Canada show relatively stable 

agreement between TSI and RF, with only slight overprediction by TSI. This consistency suggests that the RF model is 230 

successfully capturing the general climate and cloud trends for these regions, with TSI performing reasonably well, though 

slightly skewed toward overprediction. In India, the RF and TSI heatmaps show a stark contrast. The RF classifier predicts 

higher cloud fractions throughout the year compared to the TSI data. 

The percentage difference heatmap for India shows predominantly negative values (cooler colours), indicating that TSI 

persistently underpredicts the cloud fraction in this region across all months and hours. This consistent underestimation 235 

suggests that TSI data struggles to capture Gadanki's cloud dynamics properly throughout the year. In turn, the RF classifier, 

having been trained on local data, is better adapted to handling the unique cloud patterns seen here.  
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Figure 4: Median Cloud Fraction (CF) heatmaps for four regions (Australia, Germany, Canada, India) comparing TSI CF data, RF 

classifier CF data, and the percentage difference between the two. The x-axis represents the months (January to December), and the 240 
y-axis represents the time of day (06:00-18:00 local time of the corresponding location). Clear regional patterns are observed, with 

TSI tending to overestimate CF in Australia (Jan-Jun) and Germany/Canada, while underestimating in India. 
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5.2 Application of RF Classifier Model over Merak 

A crucial obstacle that has been encountered pertains to the compatibility of the RF model across different imaging equipment. 

This can be attributed to the inherent variations among sensors used in CMOS cameras and CCD cameras. This leads to 245 

discrepancies in the image characteristics such as colour, rendition, contrast, and resolution. Consequently, attempting to 

generalize the RF model to images from disparate sources becomes impractical due to the divergence in sensor specifications 

and calibration methodologies. That is why, the RF classifier developed using the TSI image data cannot be used for Merak 

that uses a CMOS-sensor based all-sky imager.  

Thus, the images of Merak went through a similar process of data selection, training, testing and validation so as to have a 250 

different model, specific to this location. After getting a good accuracy score of 95% for the test dataset, the model's 

effectiveness was verified by employing it to predict the cloud fraction for the validation set images. The scatter plot of the 

predicted cloud fraction vs the ground truth in Fig. 5(a) shows a good fit of about 0.98 with a root mean squared error as low 

as 0.05. This substantiates the high accuracy score of 95% and forms as a verification of the effectiveness of the model at a 

different location with a different imaging instrument. 255 

Despite a good fit between the ground truth and the predicted output, as evident from Fig. 2 and Fig. 5(a), there are a few 

points in the plot that have significant disparities. A few of these disparities have been shown in Fig. 5(b). A significant source 

of error affecting the predicted output can be attributed to sun glare and cirrus clouds. Although naturally occurring and often 

unavoidable, these elements introduce complexities and uncertainties that can pose challenges for accurate image analysis and 

interpretation. Sun glare often leads to overexposed or saturated pixels, making it challenging to extract meaningful 260 

information about the sky's properties. As a result, an inaccuracy is introduced in cloud detection. 

 

Figure 5: (a) Validation of RF classifier output for images taken at Merak, India (b) Shortcomings exhibited by the model in various 

scenarios where it either over predicts or underpredicts because of sun glare and cirrus clouds respectively.   
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Cirrus clouds, on the other hand, add a layer of complexity due to their intricate filamentous structure and high altitude. These 265 

clouds, composed of ice crystals, present unique challenges for accurate classification and quantification. Their thin and 

translucent nature can make them challenging to distinguish from the background, especially when they partially obscure other 

cloud types or the sun. Consequently, annotation errors arise in interpreting cirrus clouds and achieving precise semantic 

annotations becomes a labour-intensive task. Therefore, the presence of cirrus clouds can result in both false positives and 

false negatives in cloud detection, impacting the overall quality of cloud fraction estimates. Nonetheless, it's worth noting that 270 

these errors collectively account for a very low percentage of the overall dataset, making them relatively insignificant in the 

broader context. 

6 Conclusion 

CF is an essential climate variable required by the scientific community for studying climate change. The data has numerous 

practical applications including studying the earth's radiation budget, predicting future climate patterns, monitoring agricultural 275 

activities, forecasting solar energy, and assessing resources. Additionally, cloud cover data is used as input in models for 

studying pollution and climate. While traditional cloud segmentation techniques often rely on empirically determined threshold 

values, their accuracy falters under complex atmospheric and cloud conditions. This study explores the efficacy of the Random 

Forest (RF) classifier in pixel-wise cloud segmentation, using a well-curated dataset of semantically annotated images from 

five different locations. Training data with diverse sky conditions and atmospheric loading, collected over a year for each 280 

location, was meticulously selected. Subsets of these training images were used for rigorous model evaluation across multiple 

metrics. The RF classifier demonstrates strong predictive ability across all locations, with accuracy and F1 scores consistently 

above 85%, indicating a well-balanced dataset. High ROC-AUC scores further confirm the model's robust discriminatory 

ability between cloud and non-cloud classes. Additionally, the RF classifier showed strong accuracy and fit metrics, 

particularly in locations with high pollution levels, such as India and Australia. The model’s ability to generalize across diverse 285 

geographic sites highlights its location-agnostic nature, maintaining high performance even when trained on mixed datasets 

from multiple regions. Furthermore, the RF classifier exhibited a superior capability in capturing long-term weather and cloud 

patterns, making it a valuable tool for cloud cover estimation and broader climate studies. However, the model did encounter 

challenges in handling sun glares caused by incomplete shadow band coverage and distinguishing cirrus clouds, primarily due 

to annotation limitations. These shortcomings, while noteworthy, represent a minor fraction of the overall dataset, and their 290 

impact on cloud fraction estimates remains minimal. Overall, the RF classifier proves to be a highly effective and adaptable 

tool for cloud segmentation, with significant potential for improving cloud cover analysis, especially in regions with complex 

atmospheric conditions.   
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Data and Code Availability: 

All TSI sky images are publicly available at https://adc.arm.gov/discovery/#/results/instrument_class_code::tsi and their cloud 295 

fractions are available at https://adc.arm.gov/discovery/#/results/primary_meas_type_code::cldfraction. The sky images of 

Merak and Gadanki, India along with all annotations and code can be provided on request to the corresponding author. 
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