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Abstract. Cloud fraction (CF) is an integral aspect of weather and radiation forecasting, but real time monitoring of CF is still
inaccurate, expensive and exclusive to commercial sky imagers. Traditional cloud segmentation methods, which often rely on
empirically determined threshold values, struggle under complex atmospheric and cloud conditions. This study investigates
the use of a Random Forest (RF) classifier for pixel-wise cloud segmentation using a dataset of semantically annotated images
from five geographically diverse locations. The RF model was trained on diverse sky conditions and atmospheric loads,
ensuring robust performance across varied environments. The accuracy score was always above 85% for all the locations along
with similarly high F1 score and Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) score establishing
the efficacy of the model. Validation experiments conducted at three Atmospheric Radiation Measurement (ARM) sites and
two Indian locations, including Gadanki and Merak, demonstrated that the RF classifier outperformed conventional Total Sky
Imager (TSI) methods, particularly in high-pollution areas. The model effectively captured long-term weather and cloud
patterns, exhibiting strong location-agnostic performance. However, challenges in distinguishing sun glares and cirrus clouds
due to annotation limitations were noted. Despite these minor issues, the RF classifier shows significant promise for accurate

and adaptable cloud cover estimation, making it a valuable tool in climate studies.

1 Introduction

Clouds are a fundamental constituent of our weather systems and one of the most critical climate variables influencing the
Earth’s radiation budget. Cloud albedo influences how much solar radiation is reflected into space and hence affects the energy
budget at Earth's surface and of the atmosphere (Ramanathan et al., 1989). It also influences the atmospheric thermodynamics,
surface fluxes and hence the water vapor and carbon cycle (Varnai and Marshak, 2015), thereby impacting the extent of many
land-atmosphere processes, feedback and interactions at various spatio-temporal scales. Consequently, we need monitoring

devices to observe the fluctuations in cloud cover and other cloud properties at a high spatial and temporal resolution.
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Typically, these devices fall into two categories: satellite-based and ground-based imagers. While satellite imagers can observe
clouds over larger spatial domains (Verma et al., 2018), they often come with lower temporal resolutions. Ground-based sky
monitoring devices, on the other hand, capture data at varying temporal resolutions, ranging from as frequent as 30 seconds to

5 minutes over a fixed point.

Over the years, researchers have developed numerous algorithms to detect clouds in the images and classify them into broader
categories of cloud types. These cloud detection algorithms primarily fall into two categories: thresholding techniques and
classifier-based methods. A clear sky (CSL) threshold method, as discussed by (Shields et al., 2009), utilized spectral bands,
especially the red and blue bands, to distinguish between clouds and clear sky. Many researchers have adopted this (Chauvin
et al., 2015; Chow et al., 2011; Ghonima et al., 2012; Kuhn et al., 2018);(Lothon et al., 2019),. However, this threshold value
varies within an image, depending on the relative distance between the sun and the image pixel. This dynamic adjustment is
crucial because scattering properties change with variations in the path length and the angular position of the sun, as
demonstrated by (Long et al., 2006). As such, an adaptive thresholding technique was proposed based on distance from the
sun (Lietal., 2011; Yang et al., 2012). However, cloud images are inherently diverse, featuring complex spectral information.
Due to this diversity, conventional image segmentation techniques, such as thresholding and shape differentiation methods,

struggle to provide precise and consistent segmentation results.

Modern algorithms integrate multiple features into building classifier like including spectral, statistical, and Fourier-
transformed features in a supervised manner (Calbo et al., 2008). Many such supervised algorithms have been used for the
recognition of different cloud types. (Heinle et al., 2010) and (Rajini and Tamilpavai, 2018) have used a k-nearest neighbour
(KNN) classifier to determine cloud type using statistical features. (Kazantzidis et al., 2012) proposed an improved KNN
classifier for cloud-type determination where solar zenith angle and visible solar disk were considered. To improve the speed
of classification, (Rajini and Tamilpavai, 2018) have used neighbourhood component analysis to optimize the feature selection.
(Lietal., 2015) have established a cloud identification model based on the Otsu technique (Otsu, 1979) with an aim to increase
the accuracy of short-term solar power production. (Satilmis et al., 2020) have developed a hierarchical histogram merging
method to classify cloud types in high dynamic range (HDR) images. While most authors have predominantly used RGB
colour space or some derivative feature of RGB values, (Jayadevan et al., 2015) have suggested the use of hue-saturation-
value colour space to increase the contrast between clouds and background sky. The use of machine learning for cloud
classification has also gained a lot of traction in recent years. (Taravat et al., 2015) and (Li et al., 2016) showcase the use of
multi-layer perceptron neural networks as well as support vector machines in cloud detection. Artificial neural networks (ANN)
have also been implemented to distinguish clouds and non-clouds from sky images (Xia et al., 2015) using a hybrid KNN and
ANN method. (Kliangsuwan and Heednacram, 2018) introduced using Fourier-transformed features for classification using
ANN. (Wan et al., 2020) combined several texture, colour and spectrum features to classify clouds as cirrus, cumulus, and
stratus clouds. While many existing methods excel at classifying different cloud types, their accuracy tends to hover around

80-85% when it comes to precisely identifying individual cloud pixels. A U-Net based convolutional neural network model

2
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developed by (Fa et al., 2019), (Fabel et al., 2022) and (SegCloud: Xie et al., 2020) have shown promising results of having
nearly the same cloud fraction output as obtained by manual observations. An improvement in the encoder-decoder model has
been developed by (CCAD-Net: Ye et al., 2022) where the decoding stage is branched into binary segmentation for cloud
detection and attribute discrimination and feature learning. However, these CNN techniques require high-power graphical
processing units to process.

This paper's primary focus is on presenting a low computational power, high accuracy cloud fraction retrieval approach that
leverages the power of random forest for pixel-level cloud classification in sky images. The predicted cloud fractions are
compared with semantically annotated sky images from five different locations with varying atmospheric and sky conditions
to validate their accuracy and reliability. Moreover, a baseline comparison has been done between the output of total sky
imager used at the three ARM sites and our model’s output. A yearly comparison of trends in observed cloud fraction has also

been done to showcase the stability of the classifier’s output under different climatic conditions.

2 Observing sites

The sky image data used in the current work are taken from three different ARM sites (Flynn & Morris, tsi sky imager (al)).
These are publicly available data with the following sites: the Black Forest, Germany (FKB; 48.54° N, 8.40° E, 511 masl);
Southern Great Plains, Central Facility, Lamont, Canada (SGP; 36.61° N, 97.49° W, 315 masl); and Tropical Western Pacific,
Central Facility, Darwin, Australia (TWP; 12.42° S, 130.89° E, 30 masl). We also took sky image data from National
Atmospheric Research Laboratory (NARL; 13.48° N, 79.18° E, 375 masl) Gadanki, India. All these sites have the common
make of instrument - a Total Sky Imager (TSI) that takes the sky images. The TSI, used at all four locations, has a dome-
shaped spherical mirror for a 180° field-of-view of the sky. A downward-facing CCD camera is placed above the dome mirror
to take images. A shadow band is also placed that continuously rotates as it tracks the sun. This shadow band blocks the intense
direct sun that can saturate the images. This multi-site data collection allows for the evaluation of the model’s robustness across

varied locations and their atmospheric conditions.

Additionally, multi-year sky image data is taken from an all-sky camera (Ms. Prede, Japan) recorded for every 5 minutes
interval from the National Large Solar Telescope site, Merak (33.80° N; 78.62° E; 4310 m, asl), Ladakh, India. Such cloud
data in the high-altitude mountain sites in the Ladakh region are used for the astronomical site characterization program of the
Indian Institute of Astrophysics, Bengaluru, India. There are several unique features of the observing site, such as low aerosol
content (~0.05 at 500 nm, (Ningombam et al., 2015)), with 61-68% of clear skies in a year (Ningombam et al., 2021), dry and
cold atmospheric conditions located in the rain shadow area of the Himalaya. A comprehensive statistical analysis is conducted
on the model’s output for this site to show the effectiveness of capturing some of the intricate atmospheric conditions of this

location.



95

100

105

110

115

120

https://doi.org/10.5194/egusphere-2024-3364
Preprint. Discussion started: 19 May 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

3 Data Generation and Preprocessing

All sky images are organized using a timestamp-based naming convention to maintain chronological order. Any image
captured before 6:00AM and after 6:00PM (local time) were removed because of bad lighting conditions. Additionally, images
captured during rain were also removed because of the undue distortions caused by the raindrops on the lens. Since images
from different locations had varying image size, all the images were cropped and resized to 280 x 280 pixels to remove dead
zones in the image. The images had lens glares and occasional occlusions from nearby structures and instruments. To mitigate
these issues, a circular mask of radius 130 pixels is applied to all images, effectively removing potential interferences that

could disrupt the training process.

3.1 Data Selection

A large part of the uncertainty in this kind of supervised training is determining the optimal level of variability within the
dataset to ensure the model learns effectively. A well-curated selection must be made, encompassing various scenarios,
including clear skies, different cloud cover percentages and atmospheric/sky conditions for the ML model to understand the
diverse data and increase its robustness. A systematic approach was followed to curate the image dataset for training our
machine learning model. Initially, a thorough visual inspection of the entire image pool was performed. The goal was to ensure
a balanced representation of cloud cover percentages in our dataset. Around 300 images from each site were carefully selected
ranging from no clouds to 100% cloud coverage (based on visual estimation). This approach allowed us to create a diverse and
well-structured training dataset of different CF and different cloud types required for training. This would be instrumental in
developing an effective machine-learning model for cloud cover classification. A set of 100 images, that also contains various

cloud percentages between 0 to 100% and cloud types was kept aside for validation of the trained models generated.

3.2 Ground Truth Data Creation

About 2000 sky images, selected from all the five locations are meticulously annotated using the MATLAB image labeller
app. This tool offers advanced capabilities for image annotation, allowing for annotations in the form of lines, rectangles,

polygons, or pixel-level detail, with the added benefit of colour coding for a well-organized graphic user interface.

For images with complex cloud shapes, pixel-level annotation is the optimal selection. These annotations involve assigning
numerical labels to different elements in the images, with O representing the sky, 1 representing the sun, 2 representing the
clouds, and 3 representing occlusions. Given the diverse and complex nature of clouds, along with variations in experts'
perspectives on cloud pixels within an image, the annotation process involves three different domain experts. An overlap of
their annotations is taken to produce the final annotated image.

These annotated images are saved as separate pixel matrix files, retaining the same name as the original image file. This is a

crucial step to ensure that the correct annotations are cross-referenced during the model's training and testing phases.
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4 Model Selection

Random forest is a machine-learning technique to solve classification problems (Breiman, 2001). It is an ensemble method
that combines the predictions of multiple decision trees to produce a more accurate and stable prediction. Here at every
instance, a node is partitioned based on one optimal feature among several selected features. Hence, for each decision tree,
there is maximum independence leading to generalized performance and a decreased chance of over-fitting (Dietterich, 2000).
The final prediction is a result of the majority vote calculated using the probability of each k™ class:

WiNg
1
z:;'n=1"‘/]'NJ' ( )

sz

Where m is total number of classes, N;, N, are number of trees predicting the j" and k™ class and w;, w;, are the weights of the
j™ and k™ class. For tuning the RF classifier, two of the most important parameters that need to be effectively chosen are no.
of decision trees (N...) and no. of selected feature variables (My.,.). Higher M., implies an increased correlation between
two decision trees resulting in poor categorization. Similarly, larger N.,... can provide increased accuracy at the cost of higher
computational resources. It has been found that higher N,,... can lead to over-fitting in some cases (Scornet Erwan, 2017). (Fu
et al., 2019 and Ghasemian & Akhoondzadeh, 2018) have suggested choosing the two parameters such that they are large
enough to capture the patterns and have a wide diversification but small enough for the model to run at reduced computational

power and prevent overfitting.

The only limitation of RF is that they are difficult to interpret. Since an ensemble makes the final predictions of many decision
trees, and it is difficult to explain why a particular prediction was made. Even then, (Mu et al., 2017) explain that RF has lower
time and computation costs when the data size is larger than most machine learning algorithms. (Wang et al., 2020) have used
RF for cloud masking and study of cloud thermodynamics using satellite data which have shown good resemblance with the
lidar observations. (Sedlar et al., 2021) have classified cloud types based on surface radiation measurements using RF. (Li et
al., 2022) have used RF to classify cloud types from images taken by an all-sky imager for astronomical observatory site
selections. While these findings show the prowess of RF in cloud type classification, they also form the motivation to use the

RF algorithm in this paper to predict the cloud fraction from the sky images by classifying the cloud and non-cloud pixels.

The process of selecting features from the images under examination is a pivotal step in image processing and in-depth
understanding of the scenes observed through the sky imager. These features can be spectral, textural or a combination of
both.

The selection done in the paper includes the fundamental red (R), green (G), and blue (B) colour channels, which provide
insights into colour composition and distribution within the images. Additionally, the Hue, Value, and Saturation (HVS) model
is considered, offering information about the dominant colour tone, brightness, and colour vividness, thus contributing to the

interpretation of visual perception. To delve into spectral properties, the ratio of red (R) to blue (B) channels and its logarithmic
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counterpart are used, revealing variations that are indicative of cloud presence and atmospheric conditions. Notably, the RAS
(Removal of Atmospheric Scattering) feature, as introduced by (Yang et al., 2017), emerges as a key component in this
segmentation task. This composite parameter mitigates the influence of atmospheric scattering on image data, merging
panchromatic, bright, and dark channels. It minimizes the inhomogeneous sky background throughout the image and thereby
enhances the distinction between cloud and sky regions. Each of these features brings a unique perspective to image analysis,

encompassing a diverse array of image characteristics, each playing a distinct and indispensable role in the decision tree.

Model Training and Evaluation

Input Image Hyperparameter L
Tuning
v .| Random Forest based
Preprocessing Model Training C‘;)
(cropping, resizing,
masking)

A 4

Master

Annotated I >
nnotated Image b

S i=n = Trained RF
Model

Predicted Cloud
Image

Predicted Cloud
Fraction

Cloud Fraction
(Ground Truth)

Compare
Cloud Fraction

g
=]
2
1]
<
&
=
4
]
E
5
(=]

Figure 1: Algorithm flowchart

5 Model Training and Evaluation

For each of the locations using TSI, the selected 300 images aimed to capture the diversity of sky conditions of that particular
location, were used to train a random forest classifier. The classifier was configured with 100 trees (n_estimators=100) and a
fixed random seed (random_state=42) to ensure the reproducibility of results. While the set of images are representation of

different cloud fractions, they also encompass various cloud types, weather conditions, and lighting scenarios of each location.
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We then applied the trained models to predict cloud fractions (CF) on the reserved 100 annotated images for each location.
Each model, trained specifically for a given location, was used to predict the cloud fraction for the test images corresponding
to that location. The predicted CF values were compared against the ground truth annotated CF values for these test images,
providing a direct measure of the model's prediction accuracy. We computed various performance metrics, including accuracy,
F1-score and ROC-AUC score, to assess the classifier's effectiveness in distinguishing between cloud and non-cloud regions
which is tabulated in Table 1.

Table.1. Various performance metrics of the trained model for individual locations

Location Accuracy Score F1 Score ROC AUC Score
Black Forest, Germany 0.92 0.88 0.91
Lamont, Canada 0.89 0.84 0.87
Darwin, Australia 0.88 0.85 0.88
Gadanki, India 0.86 0.82 0.85

While the accuracy score for all the locations has been greater than 85%, the F1 score is also hovering around the same figure,
suggesting that the model has been trained on a well-balanced dataset having different classes. The ROC-AUC score is also
high across all locations, indicating that the model has good discriminatory ability between different classes (e.g., cloud vs. no
cloud). The model shows strong predictive ability overall, especially in Germany, with slightly lower performance in Canada

and Australia. India presents more challenges for the model, possibly due to complex cloud formations.

5.1 Model Validation

The model's primary objective is to determine the cloud fraction, representing the proportion of the area covered by clouds
relative to the total area. This effectively is a ratio between the number of pixels that are clouds to the total number of visible

sky pixels.

To gauge the model's performance, the ground truth of the cloud fraction is determined by calculating this ratio for both the
annotated images and the model's predictions. A comparison was made between the two ratios obtained, and a scatter plot of

the predicted cloud fraction vs the ground truth was plotted for each location.

Initially, a same-location RF classifier was trained using 300 images from individual sites using the TSI and validated on
images from the same site. Subsequently, a unified training set of 300 images was created using some of the images from the
training sets of all four sites that use the TSI. A new multi-location trained RF model was developed using this merged training
set, and its performance was evaluated on the validation set from individual sites. Additionally, the cloud fraction data provided
by TSI of the ARM sites and Gadanki were used for comparison with the RF classifier outputs and the ground truth. The results

of the comparative analysis from these experiments are shown in Fig. 2.
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Figure 2: Comparison of cloud fraction output against ground truth, of single-location RF model (in blue), multi-location RF model
(in green) and TSI output (in black) of ARM sites located at Black Forest Germany, Lamont Canada, and Darwin Australia and
Gadanki, India where a TSI has been used to get sky images. The RF classifier model has generally performed better than the TSI

output, with the same-location RF classifier having the higher fit value followed by the multi-location RF classifier. The fit value of
TSI has been the lowest in all four cases.

It can be inferred from the graphs that the same-location trained RF classifier has generally outperformed the multi-location

trained RF classifier, which is expected. However, the difference in performance is not substantial, suggesting a location
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agnostic behaviour of the classifier model. Furthermore, the RF classifier shows better accuracy compared to the TSI output
as indicated by the higher fit value (R?) of the RF classifier model in all four cases. This is further illustrated in Fig. 3, which
compares the outputs of our RF classifier and the TSI for three randomly selected sky images taken by the TSI at Gadanki,
India. In these cases, the TSI struggled to accurately detect all clouds, missing several significant cloud formations. In contrast,

our RF classifier performed notably better, closely aligning with the annotated clouds.

03-07-72,910"—'5—-\;.\ 11:00

P

Annotated

Original Image

Figure 3: Comparison of the detected clouds by the RF Classifier and by the TSI (at Gadanki, India) with the annotated clouds.
First column are the actual images captured by TSI on 3 July 2010 at 10:15 AM, 10:25AM and 11:00AM IST. Second column is
the corresponding annotated image with the white colour representing clouds and everything else in black. Third column is the RF
classifier’s image output of the detected cloud pixels with white colour representing clouds and everything else in black. Fourth
column shows the cloud pixels detected by TSI software, with white colour as thin clouds, grey colour as thick clouds, blue as sky,
sun’s position as yellow and everything else in black. The TSI is underestimating the cloud pixels in all three cases while the RF
classifier is capturing them nicely.

Another intriguing observation that is highlighted in Fig. 2. is the variability of TSI’s output over various regions. The TSI
outputs exhibit higher accuracy at locations characterized by lower pollution levels, such as Black Forest, Germany, and

9
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Lamont, Canada, compared to areas with elevated pollution loading, such as Gadanki, India, and Darwin, Australia. This
observation suggests that the TSI may yield more reliable results in cleaner environments due to reduced atmospheric
interference and greater clarity of sky images. However, locations with higher pollution levels may introduce complexities and

uncertainties in TSI outputs, potentially compromising their accuracy.

In contrast, the RF classifier model is not much affected by location-specific pollution loading effects. Regardless of the
environmental conditions or pollution levels, the RF classifier maintains its accuracy in estimating cloud fractions from sky
images. This robustness highlights the adaptability and generalizability of the RF classifier model across different geographical

locations with similar imaging equipment.

The RF classifier is also able to capture the regional trends of cloud fraction across all four locations as evident in Fig. 4. It
shows the median CF data as heatmaps with each row corresponding to one of the four locations and each column
corresponding to median CF obtained from TSI data, median CF predicted by our RF classifier and the percentage difference
between them respectively. The x axis of the heatmap represents the months of the year (Jan to Dec) in numbers and the y axis
represents the hour of the day from 6AM to 6PM local time for each region. The heatmap colour gradient indicates the CF
values, with darker shades representing higher cloud fractions. While the general patterns match, subtle regional differences
become apparent in the percentage difference heatmaps. In case of Australia, the TSI overestimates cloud cover in the first
half of the year and underestimates it in the latter half. This is seen in the positive percentage differences (warmer colours) in
the early months and negative differences (cooler colours) later in the year. Germany and Canada show relatively stable
agreement between TSI and RF, with only slight overprediction by TSI. This consistency suggests that the RF model is
successfully capturing the general climate and cloud trends for these regions, with TSI performing reasonably well, though
slightly skewed toward overprediction. In India, the RF and TSI heatmaps show a stark contrast. The RF classifier predicts

higher cloud fractions throughout the year compared to the TSI data.

The percentage difference heatmap for India shows predominantly negative values (cooler colours), indicating that TSI
persistently underpredicts the cloud fraction in this region across all months and hours. This consistent underestimation
suggests that TSI data struggles to capture Gadanki's cloud dynamics properly throughout the year. In turn, the RF classifier,

having been trained on local data, is better adapted to handling the unique cloud patterns seen here.

10
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Figure 4: Median Cloud Fraction (CF) heatmaps for four regions (Australia, Germany, Canada, India) comparing TSI CF data, RF

240 classifier CF data, and the percentage difference between the two. The x-axis represents the months (January to December), and the
y-axis represents the time of day (06:00-18:00 local time of the corresponding location). Clear regional patterns are observed, with
TSI tending to overestimate CF in Australia (Jan-Jun) and Germany/Canada, while underestimating in India.
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5.2 Application of RF Classifier Model over Merak

A crucial obstacle that has been encountered pertains to the compatibility of the RF model across different imaging equipment.
This can be attributed to the inherent variations among sensors used in CMOS cameras and CCD cameras. This leads to
discrepancies in the image characteristics such as colour, rendition, contrast, and resolution. Consequently, attempting to
generalize the RF model to images from disparate sources becomes impractical due to the divergence in sensor specifications
and calibration methodologies. That is why, the RF classifier developed using the TSI image data cannot be used for Merak
that uses a CMOS-sensor based all-sky imager.

Thus, the images of Merak went through a similar process of data selection, training, testing and validation so as to have a
different model, specific to this location. After getting a good accuracy score of 95% for the test dataset, the model's
effectiveness was verified by employing it to predict the cloud fraction for the validation set images. The scatter plot of the
predicted cloud fraction vs the ground truth in Fig. 5(a) shows a good fit of about 0.98 with a root mean squared error as low
as 0.05. This substantiates the high accuracy score of 95% and forms as a verification of the effectiveness of the model at a

different location with a different imaging instrument.

Despite a good fit between the ground truth and the predicted output, as evident from Fig. 2 and Fig. 5(a), there are a few
points in the plot that have significant disparities. A few of these disparities have been shown in Fig. 5(b). A significant source
of error affecting the predicted output can be attributed to sun glare and cirrus clouds. Although naturally occurring and often
unavoidable, these elements introduce complexities and uncertainties that can pose challenges for accurate image analysis and
interpretation. Sun glare often leads to overexposed or saturated pixels, making it challenging to extract meaningful

information about the sky's properties. As a result, an inaccuracy is introduced in cloud detection.
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Figure 5: (a) Validation of RF classifier output for images taken at Merak, India (b) Shortcomings exhibited by the model in various
scenarios where it either over predicts or underpredicts because of sun glare and cirrus clouds respectively.
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Cirrus clouds, on the other hand, add a layer of complexity due to their intricate filamentous structure and high altitude. These
clouds, composed of ice crystals, present unique challenges for accurate classification and quantification. Their thin and
translucent nature can make them challenging to distinguish from the background, especially when they partially obscure other
cloud types or the sun. Consequently, annotation errors arise in interpreting cirrus clouds and achieving precise semantic
annotations becomes a labour-intensive task. Therefore, the presence of cirrus clouds can result in both false positives and
false negatives in cloud detection, impacting the overall quality of cloud fraction estimates. Nonetheless, it's worth noting that
these errors collectively account for a very low percentage of the overall dataset, making them relatively insignificant in the
broader context.

6 Conclusion

CF is an essential climate variable required by the scientific community for studying climate change. The data has numerous
practical applications including studying the earth's radiation budget, predicting future climate patterns, monitoring agricultural
activities, forecasting solar energy, and assessing resources. Additionally, cloud cover data is used as input in models for
studying pollution and climate. While traditional cloud segmentation techniques often rely on empirically determined threshold
values, their accuracy falters under complex atmospheric and cloud conditions. This study explores the efficacy of the Random
Forest (RF) classifier in pixel-wise cloud segmentation, using a well-curated dataset of semantically annotated images from
five different locations. Training data with diverse sky conditions and atmospheric loading, collected over a year for each
location, was meticulously selected. Subsets of these training images were used for rigorous model evaluation across multiple
metrics. The RF classifier demonstrates strong predictive ability across all locations, with accuracy and F1 scores consistently
above 85%, indicating a well-balanced dataset. High ROC-AUC scores further confirm the model's robust discriminatory
ability between cloud and non-cloud classes. Additionally, the RF classifier showed strong accuracy and fit metrics,
particularly in locations with high pollution levels, such as India and Australia. The model’s ability to generalize across diverse
geographic sites highlights its location-agnostic nature, maintaining high performance even when trained on mixed datasets
from multiple regions. Furthermore, the RF classifier exhibited a superior capability in capturing long-term weather and cloud
patterns, making it a valuable tool for cloud cover estimation and broader climate studies. However, the model did encounter
challenges in handling sun glares caused by incomplete shadow band coverage and distinguishing cirrus clouds, primarily due
to annotation limitations. These shortcomings, while noteworthy, represent a minor fraction of the overall dataset, and their
impact on cloud fraction estimates remains minimal. Overall, the RF classifier proves to be a highly effective and adaptable
tool for cloud segmentation, with significant potential for improving cloud cover analysis, especially in regions with complex

atmospheric conditions.
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Data and Code Availability:

All TSI sky images are publicly available at https://adc.arm.gov/discovery/#/results/instrument_class_code::tsi and their cloud

fractions are available at https://adc.arm.gov/discovery/#/results/primary _meas_type code::cldfraction. The sky images of

Merak and Gadanki, India along with all annotations and code can be provided on request to the corresponding author.
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